Iterated Hard Shrinkage for Minimization Problems with Sparsity Constraints
نویسندگان
چکیده
A new iterative algorithm for the solution of minimization problems in infinitedimensional Hilbert spaces which involve sparsity constraints in form of `p-penalties is proposed. In contrast to the well-known algorithm considered by Daubechies, Defrise and De Mol, it uses hard instead of soft shrinkage. It is shown that the hard shrinkage algorithm is a special case of the generalized conditional gradient method. Convergence properties of the generalized conditional gradient method with quadratic discrepancy term are analyzed. This leads to strong convergence of the iterates with convergence rates O(n−1/2) and O(λn) for p = 1 and 1 < p ≤ 2 respectively. Numerical experiments on image deblurring, backwards heat conduction, and inverse integration are given.
منابع مشابه
New explicit thresholding/shrinkage formulas for one class of regularization problems with overlapping group sparsity and their applications
The least-square regression problems or inverse problems have been widely studied in many fields such as compressive sensing, signal processing, and image processing. To solve this kind of ill-posed problems, a regularization term (i.e., regularizer) should be introduced, under the assumption that the solutions have some specific properties, such as sparsity and group sparsity. Widely used regu...
متن کاملArbitrary Shrinkage Rules for Approximation Schemes with Sparsity Constraints
Finding a sparse representation of a possibly noisy signal can be modeled as a variational minimization with `q-sparsity constraints for q less than one. Especially for real-time and on-line applications, one requires fast computations of these minimizers. However, there are no sufficiently fast algorithms, and to circumvent this limitation, we consider minimization up to a constant factor. We ...
متن کاملA fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization.
Through the reconstruction of the fluorescent probe distributions, fluorescence molecular tomography (FMT) can three-dimensionally resolve the molecular processes in small animals in vivo. In this paper, we propose an FMT reconstruction algorithm based on the iterated shrinkage method. By incorporating a surrogate function, the original optimization problem can be decoupled, which enables us to...
متن کاملMinimization of Transformed L_1 Penalty: Theory, Difference of Convex Function Algorithm, and Robust Application in Compressed Sensing
We study the minimization problem of a non-convex sparsity promoting penalty function, the transformed l1 (TL1), and its application in compressed sensing (CS). The TL1 penalty interpolates l0 and l1 norms through a nonnegative parameter a ∈ (0,+∞), similar to lp with p ∈ (0, 1]. TL1 is known in the statistics literature to enjoy three desired properties: unbiasedness, sparsity and Lipschitz co...
متن کاملTranslation-Invariant Shrinkage/Thresholding of Group Sparse Signals
This paper addresses signal denoising when large-amplitude coefficients form clusters (groups). The L1-norm and other separable sparsity models do not capture the tendency of coefficients to cluster (group sparsity). This work develops an algorithm, called ‘overlapping group shrinkage’ (OGS), based on the minimization of a convex cost function involving a group-sparsity promoting penalty functi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 30 شماره
صفحات -
تاریخ انتشار 2008